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A simple view of landA simple view of land--atmosphere feedbackatmosphere feedback

Precipitation 

wets the

surface...

…causing soil

moisture to

increase...

…which causes

evaporation to 

increase during

subsequent days

and weeks...

…which affects the overlying 

atmosphere (the boundary 

layer structure, humidity, etc.)...

…thereby (maybe) 

inducing additional 

precipitation

Two things must happen:

1. A soil moisture anomaly must be “remembered” into the forecast period. 

2. The atmosphere must respond predictably to soil moisture anomalies.

Perhaps such feedback contributes to predictability?



Soil moisture memory and Soil moisture memory and ““hot spotshot spots””

“Hot spots" where soil moisture changes can affect summer rainfall 

(multi-model consensus). 

Koster et. al, Science, 2004
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Sample NASA forecast Sample NASA forecast –– August 2004August 2004

Validation (CAMS)
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A A ““statistically completestatistically complete”” hindcastinghindcasting experimentexperiment

75 separate, 1-month, 9-member ensemble hindcasts 

for 15 years and 5 summer months (May-Sep, 1979-93)

Koster et al., J. Hydromet., 2004

Observed 

precipitation, 

radiation

Land 

model

Model soil 

moisture

GCM 

initialization

Seasonal 

climate 

prediction

Observed 

SST
GCM

“Optimal”

atmosphere

Atmos. data 

assimilation

Conventional 

and satellite 

observations 

of atmosphere

Observed 

precipitation, 

radiation

Land 

model

Model soil 

moisture

GCM 

initialization

Seasonal 

climate 

prediction

Observed 

SST
GCM

“Optimal”

atmosphere

Atmos. data 

assimilation

Conventional 

and satellite 

observations 

of atmosphere

Observed 

precipitation, 

radiation

Land 

model

Model soil 

moisture

GCM 

initialization

Seasonal 

climate 

prediction

Observed 

SST
GCM

“Optimal”

atmosphere

Atmos. data 

assimilation

Conventional 

and satellite 

observations 

of atmosphere

Poor atmospheric initialization.

Realistic land initialization 

(Berg et al. (2005) forcing data)



Actual contribution to skill
(R2)

Maximum possible contribution 
(Idealized skill w/ perfect init and model)

Contribution of land moisture initialization Contribution of land moisture initialization 

to skill of oneto skill of one--month forecasts month forecasts 
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Koster et al., J. Hydromet., 2004
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Actual contribution to skill
(R2)

Maximum possible contribution 
(Idealized skill w/ perfect init and model)
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SUMMARYSUMMARY

Demonstrated “minimum” forecast skill associated with land assimilation, 
lots of untapped potential.

Skill should increase with improvements in

- model physics,
- initialization,

- satellite sensors (AMSR-E, SMOS, GPM, …),
- ground networks,
- data assimilation,

- validation.
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Future system (later this year…): Data assimilation 
merges information from model and observations.

NASA seasonal forecast initializationNASA seasonal forecast initialization
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Soil moisture assimilationSoil moisture assimilation

Remainder of talk:
Data assimilation with the Ensemble Kalman filter (EnKF)



yk

Nonlinearly propagates 

ensemble of model trajectories. 

Can account for wide range of 

model errors (incl. non-additive).

Approx.: Ensemble size.

Linearized update.

xk
i state vector (eg soil moisture)

Pk state error covariance

Rk observation error covariance

Propagation tk-1 to tk:

xk
i- = f(xk-1

i+) + ek
i

e = model error

Update at tk:

xk
i+ = xk

i- + Kk(yk
i - xk

i- ) 

for each ensemble member i=1…N

Kk = Pk (Pk + Rk)
-1

with Pk computed from ensemble spread

Soil moisture assimilationSoil moisture assimilation



yk

Nonlinearly propagates 

ensemble of model trajectories. 

Can account for wide range of 

model errors (incl. non-additive).

Approx.: Ensemble size.

Linearized update.

xk
i state vector (eg soil moisture)

Pk state error covariance

Rk observation error covariance

Propagation tk-1 to tk:

xk
i+ = f(xk-1

i-) + wk
i

w = model error

Update at tk:

xk
i+ = xk

i- + Kk(yk
i - xk

i- ) 

for each ensemble member i=1…N

Kk = Pk (Pk + Rk)
-1

with Pk computed from ensemble spread

Soil moisture assimilationSoil moisture assimilation

REQUIRES: REQUIRES: 

- Realistic model/forcing and observation error covariances.

- Correlation between model states and satellite observations

(need root zone estimates from surface brightness observations).

- Quality control, biases. 

Many successful twin (or synthetic) experiments, including

- Reichle & Koster, J. Hydromet., 2003

- Reichle et al., J. Hydromet., 2003

- Reichle et al., Mon. Weather Rev., 2002
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3. In situ data 
(upper 5…10cm and profile, point scale, hourly - 10 days)

Global soil moisture data setsGlobal soil moisture data sets

Soil moisture retrievals 

not available under 

dense vegetation, near 

open water, in frozen soil.

GSMDB stations
66 of 200 useful

USDA SCAN stations

23 of 103 useful

More AMSR-E data than 

SMMR data.

1. Satellite retrievals
(upper 1.25cm, 50-140km, ~3 days)

2. Model data
NASA Catchment Model (CLSM) forced w/ observation-corrected meteorological data.

(upper 2cm, ~40…150km, 3-6h)

AMSR-E (2002-06)

SMMR (1979-87)

Number of data per month

Eurasia



Data sourcesData sources

~2 deg~2 degHoriz. resolution

Meteorol. 
forcing 

data 

(obs.-

based)

1:30 am/pm12 am/pmEquator crossing

GLDASBerg et al., 2005Author

~40 km~150 kmHoriz. Resolution

(None)CRUAir temp./humid.

NASA GEOS NWP analysisRe-analysis (ERA-15) Baseline

Daily/pentadMonthlyObservations

CMAP (5-day)GPCP satellite/gaugePrecipitation

AGRMET dailySRB (1983-87 only)Radiation

~1 cm~1.25 cm Sampling depth

Njoku et al. (http://nsidc.org)Owe et al., 2001Algorithm

AMSR-E (Aqua)SMMR (Nimbus 7)Sensor

In situ data

Land surface model

Soil 

moisture 

retrievals

USDA SCANGSMDB

(same w/ minor updates)NASA Catchment (~0.5°)

X-Band (10.7 GHz)C-Band (6.6 GHz)Frequency

“AMSR-E period”

2002-05 (~3.5 years)

“SMMR period”

1979-87 (~8.5 years)



Satellite vs. satellite bias (time avg. soil moisture)Satellite vs. satellite bias (time avg. soil moisture)

AMSR-E retrievals much drier 

than SMMR retrievals.

Magnitude of differences 

comparable to dynamic range.

Soil moisture [m3/m3]

Soil moisture [m3/m3]

SMMR (1979-87)

SMMR minus AMSR-E

AMSR-E (2002-06)



Satellite vs. satellite bias (soil moisture Satellite vs. satellite bias (soil moisture variability)variability)

AMSR-E retrievals much less 

variable than SMMR retrievals.

SMMR (1979-87)

SMMR minus AMSR-E

AMSR-E (2002-06)

Soil moisture std [m3/m3]

Soil moisture std [m3/m3]



We found strong biases between AMSR-E and SMMR.

For assimilation, we are really interested in satellite vs. model biases.



Satellite vs. model biasSatellite vs. model bias
SMMR minus model (1979-87)

Soil moisture [m3/m3]

AMSR-E minus model (2002-06)

Bias in 
mean



Satellite vs. model biasSatellite vs. model bias
SMMR minus model (1979-87)

Soil moisture [m3/m3]

Soil moisture std [m3/m3]

AMSR-E minus model (2002-06)

Bias in 
mean

Bias in 
std



Satellite vs. model biasSatellite vs. model bias
SMMR minus model (1979-87)

Soil moisture [m3/m3]

Soil moisture std [m3/m3]

AMSR-E minus model (2002-06)

Bias in 
mean

Bias in 
std

1. SMMR and AMSR-E exhibit large and very different global and 
regional biases in all moments relative to the model.

2. Absolute soil moisture from satellites and model agree equally well

(or poorly…) with ground observations ⇒⇒⇒⇒ no agreed climatology.

3. For seasonal forecasts, need only normalized anomalies.

⇒⇒⇒⇒ Scale satellite data before assimilation into a model.



Soil moisture scaling for data assimilationSoil moisture scaling for data assimilation

Soil moisture cdf at 46N, 100W

Assimilate percentiles (or scaled anomalies).



Soil moisture scaling for data assimilationSoil moisture scaling for data assimilation

Soil moisture cdf at 46N, 100W

Solution:
Approximate CDF from 
many 1-year time 
series at grid points 
within some distance 
from point of interest.

2º

For “new” sensors:
- cannot use time series 
from historic satellites, 
- long time series not 
immediately available!



Soil moisture [m3/m3]

ORIGINAL multi-year data sets

(Satellite minus model)

1 year of satellite data sufficient for considerable reduction in long-term bias.

SCALED multi-year data sets 

(Satellite minus model)

Soil moisture scaling for data assimilation (mean)Soil moisture scaling for data assimilation (mean)

CDF scaling based 

on 1 year of 

satellite data

AMSR-E

SMMR

AMSR-E

SMMR

Reichle & Koster GRL 2004Reichle et al. JHM 2004



Soil moisture std [m3/m3]

ORIGINAL multi-year data sets

(Satellite std minus model std)

1 year of satellite data sufficient for considerable reduction in long-term bias.

SCALED multi-year data sets 

(Satellite std minus model std)

Soil moisture scaling for data assimilation (std)Soil moisture scaling for data assimilation (std)

CDF scaling based 

on 1 year of 

satellite data

AMSR-E

SMMR

AMSR-E

SMMR

Reichle & Koster GRL 2004Reichle et al. JHM 2004



Comparison with ECMWF Comparison with ECMWF analysisanalysis

Number of data per month

AMSR-E w/ ECMWF (2002-05)

AMSR-E w/ NASA (2002-06)

NASA:

Uncoupled land model 

(CLSM, ~0.5 deg)

2cm surface layer

Forcing from (NASA-GEOS) 

analysis, corrected w/ pentad 

precip and daily SW 

observations (~2 deg)

Jun 2002 – May 2006

ECMWF:

Operational analysis (T511)

7cm surface layer

Jun 2002 – Dec 2005



AMSRAMSR--E, NASA, and ECMWF (time avg. soil moisture)E, NASA, and ECMWF (time avg. soil moisture)

Soil moisture [m3/m3]

AMSR-E (2002-06)NASA (2002-06)

ECMWF (2002-05) AMSR-E (2002-05)



AMSRAMSR--E, NASA, and E, NASA, and ECMWF(soilECMWF(soil moisture variability)moisture variability)

AMSR-E (2002-06)

Soil moisture std [m3/m3]

NASA (2002-06)

ECMWF (2002-05) AMSR-E (2002-05)



Satellite vs. model bias (NASA and ECMWF)Satellite vs. model bias (NASA and ECMWF)

Soil moisture [m3/m3]

Soil moisture std [m3/m3]

Bias in 
mean

Bias in 
std

AMSR-E minus NASA (2002-06)AMSR-E minus ECMWF (2002-05)
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3. In situ data 
(upper 5…10cm and profile, point scale, hourly - 10 days)
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>99.99%n/a.46±.02.40±.02n/a22Root zone

AMSR-E

(daily)

SMMR: 

Reichle & Koster, GRL 2005

AMSR-E: 

Reichle et al., submitted, 2006

>99.99%>99.99%.50±.02.43±.02.38±.0223Surface

ModelSatelliteAssim.ModelSatelliteN

Confidence levels: 

Improvement of 

assimilation over

Anomaly time series correlation 

coeff. with in situ data [-] 

(with 95% confidence interval)

Validation against in situ dataValidation against in situ data



>99.99%n/a.46±.02.40±.02n/a22Root zone
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(monthly)

AMSR-E

(daily)

SMMR: 

Reichle & Koster, GRL 2005

AMSR-E: 

Reichle et al., submitted, 2006
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97.9%n/a.54±.08.42±.10n/a11Root zone

>99.99%>99.99%.50±.02.43±.02.38±.0223Surface

ModelSatelliteAssim.ModelSatelliteN

Confidence levels: 

Improvement of 

assimilation over

Anomaly time series correlation 
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(with 95% confidence interval)
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Assimilation product agrees better with ground data than satellite or model alone.

Modest increase may be close to maximum possible with imperfect in situ data. 

99.9%99.9%.43±.03.36±.03.32±.0366SurfaceSMMR

(monthly)

80%n/a.35±.05.32±.05n/a33Root zone

>99.99%n/a.46±.02.40±.02n/a22Root zone

AMSR-E

(monthly)

AMSR-E

(daily)

SMMR: 

Reichle & Koster, GRL 2005

AMSR-E: 

Reichle et al., submitted, 2006

91.1%99.7%.57±.08.50±.09.41±.0812Surface

97.9%n/a.54±.08.42±.10n/a11Root zone

>99.99%>99.99%.50±.02.43±.02.38±.0223Surface

ModelSatelliteAssim.ModelSatelliteN

Confidence levels: 

Improvement of 

assimilation over

Anomaly time series correlation 

coeff. with in situ data [-] 

(with 95% confidence interval)

Validation against in situ dataValidation against in situ data



Variance of normalized innovationsVariance of normalized innovations

Variance deficiency in dry climates, excess variance in wetter climates.

Potential for improvement by (adaptively) tuning model error parameters.

SMMR (1979-87)

AMSR-E (2002-06)



Land initialization enhances sub-seasonal prediction skill.

EnKF is promising technology for land data assimilation.

No agreed global climatology of (absolute) soil moisture.

Scaling needed for assimilation.

Assimilation of satellite data improves soil moisture estimates.

Immediate future tasks:

Improve and operationalize soil moisture data assimilation:

- Quality control.

- Spatially variable model and observation error parameters.

- Adaptive tuning of model and observation error parameters.

- Implement operational land initialization for seasonal prediction (AMSR-E).

- Do initial conditions from AMSR-E assimilation lead to better seasonal forecasts?

Conclusions (soil moisture)Conclusions (soil moisture)
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Assimilating GRACE into 

the Catchment LSM

• GRACE offers unprecedented 
measurements of variations in water 
storage.
– But, resolution is coarse and all reservoirs 
are lumped into a single estimated anomaly.

• The Catchment LSM contains an 
implicit groundwater table and 
sophisticated hydrology.

• Data assimilation should provide a 
way to use GRACE observations in the 
study of the hydrologic cycle.

Ben Zaitchik, Matt Rodell, Rolf Reichle
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GRACE v. Model Data
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A Simple Approach

Observations are assimilated with the

Ensemble Kalman Filter (EnKF)

1. Temporal: Assimilation increments are 
applied at the observation mid-date

2. Spatial: Increments are applied to all 
tiles within a sub-basin

3. Species: Increments are applied to:
a) The catchment deficit for snow-free tiles

b) Snow then catchment deficit for tiles with 
snow

Ben Zaitchik, Matt Rodell, Rolf Reichle



CSR/GFZ/JPL Assim. Results

open loop
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CSR/GFZ/JPL Assim. Results
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Evaluation

Correlation with measured groundwater

Correlation with measured groundwater

+ GLDAS soil moisture

MS OH UP LR MO

open loop 0.47 0.63 0.11 0.85 0.36

MasCon DA 0.68 0.71 0.81 0.90 0.07

C/G/J DA 0.79 0.77 0.15 0.82 0.83

MS OH UP LR MO

open loop 0.73 0.79 0.71 0.97 0.28

MasCon DA 0.68 0.77 0.44 0.89 -0.01

C/G/J DA 0.94 0.86 0.71 0.96 0.72

Ben Zaitchik, Matt Rodell, Rolf Reichle



Prospects

• Assimilation of GRACE/TWS 

anomalies is promising

• Need to identify convincing 

validation datasets

• Consider scaling GRACE data

Ben Zaitchik, Matt Rodell, Rolf Reichle



BasinBasin--scale, monthly terrestrial water storage changesscale, monthly terrestrial water storage changes

Observations of changes in terrestrial water storage:

- cover large spatial (>500km) and temporal (monthly) scales,

- include soil moisture, snow, surface water, groundwater,

- from atmospheric water balance (ERA-40) + runoff obs, and

- from GRACE (gravity mission).

With S. Seneviratne (ETH)

and M. Rodell (GSFC)

Data assimilation better than 

model alone.

Great potential for large-scale, 

longer-term constraints.

Difficult to integrate into NWP-

type assimilation systems.

Observations     Model        Assimilation

R for terrestrial water storage changes 
(vs. in situ data; Amur, Ob, Volga avg)
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Observations = Atmospheric water balance + runoff

Model = Land model with obs. forcing data



THE END.


